Researchers at NYU Tandon have reached a key milestone in their quest to develop wearable technology that manages to measure key brain mechanisms through the skin.
Rose Faghih, Associate Professor of Biomedical Engineering, has been working for the last seven years on a technology that can measure mental activity using electrodermal activity (EDA) — an electrical phenomenon of the skin that is influenced by brain activity related to emotional status. Internal stresses, whether caused by pain, exhaustion, or a particularly packed schedule, can cause changes in the EDA — changes that are directly correlated to mental states.
The overarching goal — a Multimodal Intelligent Noninvasive brain state Decoder for Wearable AdapTive Closed-loop arcHitectures, or MINDWATCH, as Faghih calls it — would act as a way to monitor a wearer’s mental state, and offer nudges that would help them revert back to a more neutral state of mind. For example, if a person was experiencing a particularly severe bout of work-related stress, the MINDWATCH could pick up on this and automatically play some relaxing music.
Now Faghih — along with Rafiul Amin, her former PhD student — has accomplished a crucial task required for monitoring this information. For the first time, they have developed a novel inference engine that can monitor brain activity through the skin in real time with high scalability and accuracy. The results are featured in a new paper, “Physiological Characterization of Electrodermal Activity Enables Scalable Near Real-Time Autonomic Nervous System Activation Inference,” published in PLOS Computational Biology.
“Inferring autonomic nervous system activation from wearable devices in real-time opens new opportunities for monitoring and improving mental health and cognitive engagement,” according to Faghih.
Previous methods measuring sympathetic nervous system activation through the skin took minutes, which is not practical for wearable devices. While her earlier work focused on inferring brain activity through sweat activation and other factors, the new study additionally models the sweat glands themselves. The model includes a 3D state-space representation of the direct secretion of sweat via pore opening, as well as diffusion followed by corresponding evaporation and reabsorption. This detailed model of the glands provides exceptional insight into inferring the brain activity.
Source: Read Full Article